THEORETICAL STUDY OF THE NON-WATSON-CRICK BASE PAIR GUANINE-GUANINE

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher order structural effects stabilizing the reverse Watson–Crick Guanine-Cytosine base pair in functional RNAs

The G:C reverse Watson-Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather u...

متن کامل

The deprotonated guanine-cytosine base pair.

Awareness of the harmful effects of radiation has increased interest in finding the mechanisms of DNA damage. Radical and anion formation among the DNA base pairs are thought to be important steps in such damage [Collins, G. P. (2003) Sci. Am. 289 (3), 26-27]. Energetic properties and optimized geometries of 10 radicals and their respective anions derived through hydrogen abstraction from the W...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag(+) is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg(2+). In contrast to prior studies of Ag(+) incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA ...

متن کامل

Non-Watson-Crick base pairs in RNA-protein recognition.

The cellular functions of most RNA molecules involve protein binding, and non-Watson-Crick base pairs are hallmark sites for interactions with proteins. The determination of three-dimensional structures of RNA-peptide and RNA-protein complexes reveals the molecular basis of non-Watson-Crick base-pair recognition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Chilean Chemical Society

سال: 2010

ISSN: 0717-9707

DOI: 10.4067/s0717-97072010000100012